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I. INTRODUCTION

In 2007 , Huang and Zhang [10] introduced the cone metric space by replacing real numbers with an ordering banch
space .Many authors studied &proved some fixed point theorems[See(1,2,3,4,5,6,7,8,12,14,15)and references there in]. In
1976, Rosenholtz [14] discussed local Expansion as , f is a local expansion if every point in X has a neighborhood B on
which f is expansion. After this a number of fixed point theorem for expansion mapping have been proved by park &
wang,Li, Gao & Iseki , khan et al [18 ] park & Rhoades &Taniguchi etc[11,17] . Actually the above mentioned theorems
appear to be the generalization for expansion mapping of banach contraction principle.

Il. PRELIMINARIES

Definition 2.1: Let B be a real banach space & P be a subset of B . P is called a cone
if

i> Pis aclosed , non empty & P #{o}

ii> a,beR,a,b = 0&x,yepimplies ax +byep

ii> xXeP& — xeP implyx =0

Given acone P € B, we define a partial Ordering “<”inBbyx < yify— xeP,wewritex < ytodenotex <y
butx # yandx << ytodenotey- x ep®, p° stands for the interior of P

Proposition2.2[5]: - Let P be a cone in a real banach space B ,If forae P, and a<ka,Forsome ke (0,1)thena=0
Proposition2. 3[5]: - Let P be a cone in a real banach space B, Iffor ae B& a<<c,forallcep®thana=0
Definition2.4: - Let X be a non empty set suppose the mapping d: X X X — B satisfies

0<d(x,y) forallx,yeX&d(x,y)= 0iffx= yd(x,y) = d (y,x)forall x,yeXd(x,y) < d(x,y)+
d(z,y) forallx,y,zeX .

Then d is called a cone metric on X and (X, d) is called a cone metric space .

Example 2.5[2]: LetE=R? ,P= {(x,y )eE: x,y = 0} Cc R?,

X=R?and d: X xX - E defined by

dle,y) = d{(x1,%2), 1 ¥2)} = (max{lx; —y1 |, Ix; — y2 | Lamax {x; —y1 |,1(x2 — ¥z |} where a =

0 is a constant then ( X ,d ) is a cone metric space .
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Definition 2.6[3]:- Let (X, d ) be a cone metric space , Let { x,, } .y be asequencein Xand xeX .IfforanyceE
With 0 << ¢, there isny, e N, s.t for all n> n, d(x,,,x) <<c.Then {x, },cy i said to be convergent to x , and x is the
limit of { x,, } ,, ¢y We denote this by lim,, ., d(x,, ,x) =0

Definition2.7[3]: Let (X, d ) be a cone metric space & { x,, } ,n be a sequence in X If forany ce E With0<<c,
there is ny e N such that for all m,n > n,, d(x,,x,) <<c then {x,},n IS called a Cauchy sequence in x. we
denote this by lim,, ., d(x, , x;n) = 0

Definition2.8 [3]: Let (X, d) be a cone metric space & { x,, } ,n be asequence in X. if{ x,, } , - 5 iS CONVergent,
then it is a Cauchy sequence.

Definition2.9[3] : Let ( X, d ) be a cone metric space, if every Cauchy sequence is convergent in X ,then X is called a
complete cone metric space.

Definition2.10 [3] : Let (X, d ) be a cone metric space. Let T be a self map on X. If for all sequence {x, } nen in X
lim,,,x, »x = lim,_,Tx, — Tx then T is called continuous on X.

Lemma2.11: Let (X, d) be a cone metric space. If { x,, } is a convergent sequence in X, then the limit of { x,, } is unique.

Lemma2.12: Let (X, d ) be a cone metric space,{ x,, } be a sequence in X. If { x, } converges to x and {x,, } is any
subsequence of { x, } then {x,, } converges to X .

1.  MAIN RESULT

Theorem: Let (X, d) be a cone metric space with respect to a cone P.Let S & T be a continuous self map satisfying .

Bd(y,Ty)[1+ d(x,Sx)]

T >
d(Sx,Ty) + ad(x,y) = 1+d0cy)

+y max{d(x, Sx),d(x,y),d(y, Ty)}

Foreachx,y e X,x # y,where a,8,y =2 0,1+ a <  + y then S &T have a common unique fixed point.

Proof: Let x, be arbitrary point of x. Define the sequence by x; = Sx, and x, = Tx,

BA(Xan1) X2ns2 )1 + d(X2n, X2p41) +
1+ d(xzpn, X2n4+1)

Ad(Xan41) Xone2 ) + ad(Xpn, Xoneq) 2
¥y max[ (Xzn, X2n41 ), (X2, Xan+1 )y A (o1, Xone2 )]

A(Xon41) Xonaz ) + ad(Xon, Xoni1) = BA(Xoni1s Xonez2) + ¥d(Xons1, Xone2)

ad(Xzn, Xont1) = (B+y — DdXons1, Xons2)

a

<
B+y-1)

d(X2n+1) X2n42) d(X2n, X2n41)

In general

Ad(Xpy1) Xna2) < d(Xp, Xn41)

_*
(B+y-1)
We proceed as follows

a
d(xXp, Xpse1) < 6 d(xp_q,x,) Where § = ———
( +1) ( 1 ) (ﬁ + y _ 1)
d(xn, xn41) < 6™ d(x,x1)
Now we shall prove that { x,, } is a Cauchy sequence, for this we take a positive integer P, we have

d(xn; xn+P) < d(xnv xn+1)+ d(xn+1v Xn+2 )+t d(xn+P—1’ xn+P)
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< (8™ 4 8™ 4 4 ™) d (xg, %, )

< 8"/(1-8) d(xg,x1)

Since 0< § < 1thenn - 0,6 (1 —6)"1 - 0. Hence d(x,, , x,,) > 0 as m,n > ©

it implies that { x,, } is a Cauchy sequence in X, there exists a point

zeX such that x, = z, then the subsequences Sx,, = zand TX;,,41 = Z.

Uniqueness: w is another fixed pointof S& T

d(Sz,Tw) = d(z,w) =

Bd(w,Tw) [1+d(z,52)]

—ad(z,w) + i)

+ ymax[d(z,Sz),d(z,w),d(w, Tw)]
d(z,w) = —ad(z,w) +y d(z,w)

d(z,w) = (y — a)d(z,w)

d(z,w) < ﬁ d(z,w)

d(z,w) =0 [Asy > a and by prop [2.2]

zZ=Ww

This completes the proof of the theorem.
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